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Received 24 January 1995. in ha l  form 11 April 1995 

Abstract. The behaviour of FCC crystals of the metals platinum, gold, rhodium and silver 
under uniaxial tension was investigated using atomistic simulation. At temperatures above half 
the melting temperature all the model metals disordered before they failed by void formarion. 
Investigation of the free energy as a function of order parameter showed thaf this process occurs 
when the free energies of the ordered and disordered states ille equal, rathe than at the limit 
of metastability of the stretched aystal. At lower temperahlres different behaviour was seen in 
different metals; in the more ductile metals local regions of disorder appear ht, while in the 
other metals defects are generated by sliding of planes of atom. 

1. Introduction 

The way in which perfect crystals fracture under different geometrical constraints is of 
considerable interest, and is a topic that can appropriately be investigated by atomistic 
computer simulation. Although the fracture of real crystals is usually determined by defects, 
the ultimate strength of materials depends on the way in which defect-free crystals break [I]. 
The most nearly perfect crystals known are whiskers. Rather analogous to these are the 
bridges formed in scanning tunnelling microscopy, when a tip touches a flat surface and is 
then withdrawn. Under some circumstances a thin whisker of material is pulled out [2,3]. 
Agralt and co-workers [3] have shown that whiskers of lead formed in this way show a 
succession of steps in the stress-strain curves. 

The principal factors affecting the way in which perfect crystals fracture are the type of 
material, the temperature and the constraints under which the material is stretched. 

Numerical experiments using atomistic simulation have previously been used to 
investigate the failure of perfect crystals at finite temperatures. Paninello and Rahman 141 
were the first to show the effects of temperature on the failure of a perfect crystalline 
material. Wang and co-workers [5], Maguire [6] and more recently Blonski and co- 
workers [7] have investigated stress and fracture of two-dimensional systems at finite 
temperatures, while Lynden-Bell [8,9] and Selinger and co-workers [IO] have looked at 
three-dimensional systems of various types. 

In this work samples of FCC metals are stretched along their (100) directions, with the 
lateral dimensions constrained to be constant. In the initial stages the material remains 
ordered, but at temperatures of approximately half the melting temperature or higher, 
disorder sets in as the stress reaches its maximum value. This is the point of failure 
and is quickly followed by void formation and fracture. At lower temperatures different 
behaviour is seen in different materials. In the more ductile platinurdgold model a local 
region of disorder forms, while in the model for rhodiudsilver planes of atoms are seen 
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to slip sideways relative to each other. The behaviour of platinudgold can be interpreted 
in terms of the Landau free energy curves of the disordered and ordered materials. The 
differences between the two materials are discussed. 

2. Methods 

2.1. Potential 

Numerical experiments were carried out on two different metals. In order to model metals 
in an atomistic simulation it is necessary to go beyond a simple pair potential. In this 
work we used the potentials of the FinnisSinclair type [l I], as developed by Sutton and 
Chen [12]. In these potentials 

where p;. the density at atom i, is modelled by 

Although this is truly a many-body potential, the force on each atom can be written as a 
sum of pairwise contributions 

where 

These potentials contain two exponents, n and m ,  and two parameters, e and a, which 
determine the scales for energy and distance respectively. It should be noted that c is not 
a free parameter but is determined by the requirement that a be equal to the equilibrium 
lattice constant at zero temperature. Metals modelled with different exponents have different 
properties, while the properties of metals modelled with the same exponents but different 
values of the scaling parameters are the same in terms of reduced units of E for energy and 
a for distance. 

Sutton and Chen [12] used bulk properties to assign exponents to different FCC metals. 
Their work, and subsequent investigations 1131. have shown that the family of Sutton- 
Chen potentials of this type ranges from very ductile materials, in which n and m have 
similar values (for example platinum and gold with n = 10.m = 8)  to less ductile 
materials, in which n and m differ more widely (for example silver and rhodium with 
n = 12, m = 6). ?he potential for platinumfgold is both softer and more short-ranged than 
that for rhodiudsilver. 

All the static properties of materials with the same values of m and n scale, so that if 
we do a calculation with, say, n = 10, m = 8 we can predict the behaviour of both platinum 
and gold. It should be noted that as these potentials have few parameters they cannot be 
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lsble 1. Some properties of the materials used. 

4605 

Metal a; Uo Tm tTm AH, E 3 d  AV CY,/E CP2JE e a / E  

F’t(model) 3.92 67.84 1400fSO 0.021 0.025 8.4% 7.8% 1.13 0.93 0.27 
F’t (apt.) (2042) (0.030) (0.040) (124) (0.88) (0.27) 
Au (model) 4.08 43.76 880i30 0.021 0.025 8,4% 7.8% 1.13 0.93 0.27 
Au (expt.) (1338) (0.030) (0.035) (1.14) (0.94) (0.27) 
Rh (model) 3.80 65.49 2200f50 0.034 0.043 15.1% 8.5% 1.26 0.86 0.53 
Rh (ex%) (2236) (0,034) (0.050) (1.57) (0.71) (0.72) 
Ag (model) 4.09 33.72 1100f30 0.034 0.043 15.1% 8.5% 1.26 0.86 0.53 
Ag ( e m )  (1235) (0.037) (0.039) (1.21) (0.90) (0.47) 

[AI [idw KI [U01 [U01 [amUol 161 

a 00 h the cubic IalIice ~)nstant and is equal to f i  times the nearest-neighbour distance. h, 

expected to fit all properties accurately; however, because they have few parameters it may 
be easier to understand trends and the underlying physics of various processes. They are 
also longer-ranged than most ‘glue’ or ‘embedded atom’ potentials and are therefore more 
appropriate for describing interactions between newly fractured surfaces. 

In the calculations described in this paper two Sutton-Chen potentials were used: the 
(10.8) potential, which is suitable for platinum and gold, and the (12,6) potential, which 
describes silver and rhodium. The sums in the potentials were computed out to 2.1 times 
the nearest-neighbour distance, i.e. between the fourth and fifth nearest neighbours. Note 
that this is slightly shorter than the cutoff used by Todd and Lynden-Bell [13]. Table 1 
shows some of the properties of these metals scaled to the experimental binding energy U0 
and lattice constant ao. Experimental numbers are given for comparison. Further properlies 
were given in the original paper by Sutton and Chen I121 and by Todd and Lynden-Bell[l31. 
Of the properties that are of particular relevance to this work, the elastic constants Cll and 
Cl2 are reasonably well fit, particularly for silver and gold. An imponant deficiency is that 
the surface energies are too lowi. The melting temperatures of platinum and gold are also 
too low, and this is correlated with the fact that the enthalpy of the (10,8) liquid and hence 
the latent heat of fusion (AH&) are low. The main differences between the (10,8) and 
(12.6) metals are the much lower uniaxial (C11 - CIZ) and shear (CU) elastic constants 
and the greater relaxation found in the former metals compared with the latter. 

2.2. Method of calculation 

The calculations described in this paper were carried out using the Monte Carlo method. 
The system was set up in an Fa: lattice with a block of (4 x 4 x 4) unit cells (N = 256 
particles) with periodic boundaries in the x ,  y and z directions. Particle positions were 
expressed in coordinates (sx, sy. sz) scaled to the periodically repeated molecular dynamics 
box. The !me separation between a pair of particles is given by 

rij = aoInAx(sxi - &j)% + nyhyj(+i - s y j ) B  + ~zhzz(sz i  - szj).2I (5) 

where a0 is the zero-temperature lattice constant and n,, ny and n, are the numbers of 
crystallographic unit cells in the x ,  y and z directions of the simulation box; h,, h ,  and 
h,, are scaling parameters and %, 6, 2 are unit vectors in the corresponding Cartesian 
directions. The initial values of the scaling parameters h g ,  hR and h e  were taken to be 

t The values for the surface energies for gold and silver in 1131 have been inconeetly converted. TIE c m t  
values for the (100) surfaces are 0.61 1 far gold and 0.861m-’ for silver. 
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lhble 2. Details of runs 

Metal TIITml IdkT//[Uol T KI h e  = k e  
W A u  0.04 0.74 50(Pt) l.oo07 
W A u  0.35 1.4 500(Pt) 1.009 
W A u  0.55 11.1 750(Pt) 1.013 
W A u  0.70 14.7 loo0 @) 1.019 

W A g  0.04 1.15 75 (Rh) 1.002 
Rh/Ag 0.35 11.5 750 (Rh) 1.010 
W A g  0.55 18.3 lux) (Rh) 1.017 
W A g  0.70 22.9 ISW(Rh) 1.023 

equal to each other and chosen to give zero stress at the temperature concerned (see table 2 
for values). 

After equilibration, a steadily increasing uniaxial stress was applied in the (100) direction 
by increasing h,, by a small amount at the end of each Monte Carlo cycle (in one Monte 
Carlo cycle, N attempted particle moves are made). In these experiments h,  and h,, 
were kept constant so that the crystal was stretched along the (100) direction with no 
lateral relaxation. This is in contrast with earlier experiments [lo] on platinum, in which 
we allowed lateral relaxation. One can imagine that in the current experiments we are 
modelling a small portion of material embedded in a much larger crystal. 

In order to compare different materials one wishes to use comparable temperatures. 
There are several ways of choosing the ‘same’ temperature for different materials; for 
example, one could use the same value of kTjUo, where U0 is the cohesive energy. Here 
we have chosen a different standard for setting the temperature scale, and have expressed 
temperatures as fractions of the melting temperature T, of the metal concemed. 

All the results were expressed as functions of the strain 

which is a dimensionless quantity. The strains €ss and cLz were both equal to zero. 
Runs were carried out at four temperatures for the (10,s) and (12.6) potentials. Details 

of the temperatures and potentials are given in table 2. Before each run the sample was 
equilibrated and then the strain was changed at a rate of 0.1 in 20 x lo3 Monte Carlo cycles. 
Every 200 cycles the potential energy per atom, the longitudinal and lateral stresses, and 
the bond order parameters Q4. Q.5. Wh and w6 were stored. Configurations were written 
to a file for subsequent viewing every 5000 steps, i.e. at intervals of 0.025 in the strain. In 
most cases runs were continued to a maximum strain of 0.4. 

The stress tensor is given by 

where (Fij). is the (Y component of the pair force (equation (4)) between atoms i and j 
separated by ~ i j  and V is the current volume of the sample: 

V = nxnynra~h,,hyyhz.. (8) 

The orientational bond order parameters QL, WL are rotationally invariant combinations 
of spherical harmonic functions of the vectors between neighbouring atoms [14]. We 
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investigated the four parameters, Qq, Q6, Wd and w6 previously used for bulk 
systems [15,16]. In order to consbuct these, 'bonds' are drawn between all atoms nearer 
than a prescribed cutoff distance (equal in this work to 1.24 times the nearest-neighbour 
separation). The QL order parameters are made up of the square of sums of spherical 
harmonics for all Nb bonds in the sample: 

and are invariant under rotations, while the WL functions are the third-order invariants 

where 

Two of these bond order parameters, Wq and Q.5, proved to be particularly useful in 
this investigation. The important properties for the present purposes are that is always 
positive and has values of about 0.5 for ideal FCC, HCP and BCC crystals. Although e6 
would be zero for an infinite liquid, the observed values in simulations of liquids with 
128 atoms and periodic boundaries were approximately 0.07 for liquid platindgold and 
silver/rhodium [16]. W4 on the 0 t h ~  hand can be positive or negative. The value of W4 
for simulated liquids is close to zero, while different ordered smchues can be distinguished 
by the sign of Wq; for example, the values for ideal FCC and HCP lattices are -0.159 and 
+0.134 respectively. 

2.3. Free energy calculations 

The Landau free energy, F(Q,  T), is the free energy of the system as a function of some 
order parameter, Q. The value of F for Q = Qo can be defined by 

exp[-F(Qa, W k T I  = /exp(-E/kW(Q - Q d d r  (12) 

where the integral is over all phase space. It can be written in terms of the probability 
pQ(Q)dQ of finding the system with a value of the order parameter between Q and Q+dQ 
as 

F(Q) = A  - ~ T ~ P Q ( Q )  (13) 

where A is the Helmholtz free energy of the system. 
The most straightforward way of determining F(Q)  would be to sample the canonical 

distribution function at the appropriate temperature and use the resulting probabilities, 
~ Q ( Q ) ,  to construct F(Q). A more efficient way is to bias the system [15,16] using a 
Q-dependent potential in such a way as to lower the free energy barrier. The probability 
p,(Qo) of finding the biased system with the value of Q = Qo in the presence of the 
additional potential w(Q) is then 

P ~ Q o )  = /exp[-(E + w(Q))/kr]S(Q - Qoo)dr/Z(w) (14) 
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where 

Z ( w )  = exp[-(E+ w(Q))/kT]ds (15) s 
and hence 

F(Q0) = w(Q0)  - kT Inp.(Qo) +constant. (16) 

Equation (15) allows the Landau free energy F(Q) of the unbiased system to be determined. 
Details of the method are given elsewhere [lS, 161. Umbrella sampling, in which small 
ranges of the appropriate order parameters are explored separately in a Monte Carlo program 
with biasing potentials, was used to investigate free energy barriers for changes in the order 
of both metals in stretched configurations. W, was chosen as the order parameter because 
it distinguishes both between ordered and disordered states of platindgold and between 
states with different types of order in rhodiudsilver. Some of the free energy calculations 
were carried out on a sample of 128 atoms with truncated octahedral boundary conditions 
to suppress void formation and fracture. 

3. Initial failure 

The results will be discussed separately for the regime leading from the crystal to failure and 
for the regime in which the crystal is stretcbed further. Because of the periodic boundary 
conditions and the comparatively small sue of the system these two regimes correspond to 
different physical situations in real materials. The first regime corresponds to the failure of 
the crystal. After failure the model system rapidly forms a bridge between two new crystal 
surfaces so the post-failure behaviour of the model system is comparable to the stretching 
and breaking of a thin tongue of material between two separating surfaces. 

3.1. Initial failure: platinuntlgold 

Figure 1 shows the variation of potential energy and longitudinal stress with strain for this 
material at four different temperatures O.WT,, 0.35Tm, 0.55Tm and 0.7Tm, where T, is 
the bulk melting temperature of the material. In each diagram the lower curve shows the 
stress-strain relation and the upper curve shows the potential energy as a function of strain. 
At finite temperatures the equilibrium stress (defined so that a negative value corresponds 
to a tension) is equal to minus the derivative of the free energy with respect to strain. It 
contains an entropic contribution in addition to the derivative of the potential energy: 

U@=-(-) -1 aA =-(-) -1 a u  +-(-) T a s  
I.' v v 

where A is the Helmholtz free energy and U is the potential energy of the system. At least 
until failure, we shall see that the degree of disorder increases with strain, making the stress 
somewhat less negative than one would predict from the derivative of the potential energy 
curves. However, after failure the material does not behave in a reversible fashion and we 
cannot apply these arguments. 

The stress-strain curves at different temperatures show some similar features. Initially 
the stretching obeys Hooke's law with the stress being a linear function of the strain, but 
the curves soon bend over and, except for the lowest temperature, reach a broad maximum. 
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This is followed by a decrease in the magnitude of the stress when the material has failed. 
There is rather little change in the value of the strain corresponding to maximum stress: 
it is about 0.1. The magnitude of the maximum stress, however, falls significantly as the 
temperature rises, as does the elastic constant c11 (which is determined by the initial slope 
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of the curve). The position of maximum stress is the point of failure of the material and 
marks the change from reversible to irreversible behaviour. The other change to be noted 
is that the stress falls sharply after failure at the lowest temperature, while it changes more 
gradually at higher temperatures. One must recall that the crystal is constrained to remain 
tetragonal in these experiments, and the crystal cannot elongate by processes in which the 
cell symmetry changes (for example, a monoclinic distortion). Values of the elastic constants 
Cll and Clz, and the maximum stress for platinum and rhodium, are given in table 3. To 
scale these values (in GPa) to the those appropriate for gold and silver respectively, one 
must multiply them by the ratio of &/U: for the two materials. Thus the values for gold 
are 0.57 of those for platinum, and those for silver are 0.41 for rhodium. 

Table 3. Results from the simulations of platinum and rhodium. 

Metal T 17.1 Maximum sbess [GPal CII IGPal Cm [GPal 

pt= 0.0 26 315 255 
Pl 0.04 19 i 0.5 310i 10 250 f IO 
Pl 0.35 14.2i0.2 260 i 20 200 i 20 
pt 0.55 10.5 i 0.3 230 i 20 215 i 20 
Pl 0.70 8 f 0.5 I65 i 50 108 & 50 

Rh' 0.0 28.7 343 230 
Rh 0.04 24.5 320 i IO 215 &20 
Rh 0.35 16.5 275i20 175 520 
Rh '0.55 12.5 290*20 180*24l 
Rh 0.70 9.5 85 i 30 60 f 30 

a The st rases  and elastic mmtanu for gold can be found by multiplying the values for platinum 
by 0.57, those for silver can be found by multiplying the values for rhodium by 0.41. 

The potential energy curves increase to a maximum value and then drop. The potential 
energy decreases when a void is formed in the sample. This is an irreversible process which 
leads to fracture into two crystals. Initially the two new crystals are joined by a tongue of 
material, which is stretched and finally breaks as the sample is elongated. At least at the 
two higher temperatures, the maximum potential energy occurs at a larger strain than the 
maximum in the stress, showing that void formation occurs after, rather than at, the point 
of failure. 

In order to find more information about what is happening in the material, we first look 
at the behaviour of the order parameters and then inspect some individual configurations. 
Figure 2 shows the changes in the values of the bond order parameters Q6 and W4 as the 
material is stretched at the four temperatures. Here we see a big difference between the two 
lower temperatures, where the order parameters decrease during failure and then recover 
(see the two upper graphs in the figure), and the two higher temperatures, where Q6 and 
IW4[ decrease to liquid-like values during failure and do not recover (see the two lower 
graphs in the figure). 

Figure 3 shows snapshots from the platinumlgold simulations at all four temperatures. In 
each of these figures the direction in which the crystal is strained (x) is plotted horizontally 
and the small circles show the positions of the centres of the 256 atoms in the simulation cell 
plus some of their periodic images projected along the y direction. As the projection is along 
rows of atoms in the crystal many of the atoms are obscured at the lowest temperature. The 
cell is surrounded by periodic images on all sides. To clarify the picture we show slightly 
more than one periodic image of the simulation cell in the x direction. We notice that 
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in every case the crystal lattice is still perfecr i.e. free from disorder or defects, in the 
first configuration in each sequence. These correspond to points near the maxima in the 
stress-strain curves. i.e. near the failure point. At larger strains we see differences. At 



4612 R M Lynden-Bell 

MK ~-0.1 

m 

6 

05 0 0.5 

0.5 

0 

0.5 
0.5 0 0.5 

5OK E - 0.15 XlOK - D - 0.125 

-0.5 0 0.5 -0.5 0 0.5 

4 1 K ~ - O 3  XOK - E - a175 

4.5 0 0.5 4 . 5  0 0.5 

Figure 3. Configurations from Lhe tow runs for platinum shown in figures I ad i. (a) 
T 50K = 0.04Tm. (6) T = 5WK = 0.35Tm.. ( E )  T = 750K = 0.55Tm. (d)  
T = IOOOK = 0.7Tm. 



Failure of stretched crystals 

7MK - E -0.1 

45 0 0.5 
7MK - E - 0.125 

4613 

-0.5 0 0.5 

7MK - L - 0.15 
0.5 

0 

-0.5 0 0.5 

750K - E = 0.2 
0.5 

0 

4.5 
4.5 0 0.5 

l W K .  E - 0.075 

-0.5 0 0.5 

4.5 0 a5 

4.5 0 0.5 

Rgure 3. (Continued) 



4614 R M Lynden-Bell 

the lowest temperature (0.04Tm) the crystal breaks fairly cleanly leaving a few atoms in 
overlayen. At the next temperature (0.35Tm) we see a region of local disorder at a strain 
of 0.125 in which a void appears (see the configuration at a strain E = 0.15). Comparing 
this to the stress-strain curve in figure 1, one sees that the onset of disorder marks the point 
of failure. At the two higher temperatures the whole of the sample becomes disordered 
before the voids are formed. Evidence that the disorder occurs before the voids appear is 
provided by comparing the positions of the maxima in the potential energy curves with the 
point at which the stress begins to drop. The maxima in the potential energy curves, which 
mark the point of void formation, occur at progressively larger strains as the temperature 
increases and, particularly at the two higher temperatures, are at significantly larger strains 
than the point of maximum stress. This can be interpreted as showing that at least the initial 
decrease in stress is due to the initiation of a region of disorder, which does not greatly 
affect the value of the potential energy and if anything tends to increase this value, while 
the subsequent void formation leads to an increase in the average separation of the atoms 
and hence to a decrease in the potential energy. 

To summarize, these results for platindgold show a clean break at very low 
temperatures, local melting at intermediate temperatures and melting of the complete sample 
at higher temperatures. The maximum strength is determined by the point at which disorder 
sets in; void formation follows at larger stresses. 

3.2. Initial failure: rhodiudsiiver 

Figures 4 and 5 show the stress-strain. potential energy-strain and order parameter-strain 
curves for rhodiudsilver at four temperatures which correspond to the four temperatures in 
the platinudgold runs. As mentioned above, they are the same proportion of the melting 
temperature, but a somewhat higher proportion of the binding energy. 

The low-temperature curve differs from the corresponding curve for platinudgold. 
Instead of there being a smooth growth in the magnitude of the longitudinal stress until 
failure, two dips are seen at strains of approximately 0.11 and 0.14 and, as a result, the 
point of failure occurs at larger stresses than for platinudgold. The lateral stress (shown as a 
dotted curve) increases monotonically and becomes approximately equal to the longitudinal 
stress after the second dip. The order parameters change significantly at each dip, showing 
that each dip is associated with a structural rearrangement. Examination of individual 
configurations shows that layers of atoms perpendicular to the direction of pull remain well 
defined, but with the positions of some atoms within each layer having changed due to the 
fact that some (1 11) planes of atoms have slipped sideways. As before, when the crystal 
finally breaks the potential energy drops and the stresses become smaller in magnitude. 
Note that although the longitudinal stress drops to zero at a slightly larger strain than is 
shown in the figure, the lateral stress remains equal to about -1OGPa. This is due to the 
surface stress (surface tension) of the two new surfaces. 

At the three higher temperatures the stress-strain curves are more flat-topped than those 
for platindgold, with a suggestion of a dip at E % 0.125. ?his is due to the formation 
of defects similar to those seen in the lowest-temperature run. When runs at 0.04Tm and 
0.35Tm were repeated, the stress-strain curves were found to be very similar to those for 
previous runs at the same temperatures, with small variations in the exact values of the 
strain at which the dips occur and changes in the details of the resulting atomic positions. 
Unlike the platinudgold simulations there is no evidence for local melting at T = O.35Tm 
At the two higher temperatures the samples do disorder, and here we see similarities to the 
platinudgold situation. At T = 0.55Tm disorder occurs and is immediately followed by 
void initiation and fracture, while at T = 0.70Tm the sample melts at E = 0.15 although 
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S W S .  
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void formation does not occur until it is stretched to E = 0.2. The point of failure at these 
temperatures is associated with the onset of disorder. 

The order parameter curves (figure 5) also show what is happening when the sample 
changes structure. At both T = 0.35Tm and 0 3 T ,  the values of Qs decrease somewhat, 
while W4 fluctuates b m  negative to positive values when this happens. The changes in 
structure are again the result of lateral displacements of (1 11) planes of atoms perpendicular 
to the direction of strain. 

To summarize, for the rhodium/silver sample, the formation of defects allows the crystal 
to stretch further before failure than the platinumlgold sample. At T = 0.55T, the final 
failure occurs via melting and void formation, as for the platinudgold material at the 
corresponding temperature. There are, however, no signs of local disorder before failure 
of rhodiumlsilver at T = 0.35T,. At T = 0.70T,, the sample melts at 6 0.15, but void 
formation is postponed until t m 0.20. 

4. Free energy considerations 

An infinite stretched crystal is always metastable with respect to two separate crystals with 
new interfaces as the surface free energy of the new interfaces is negligible compared with 
the bulk free energy. In a system with periodic boundaries, such as we have in these 
numerical experiments, the surface free energy of the new interfaces cannot be neglected. 
Nevertheless the ordered crystal becomes metastable at a small value of the strain, e .  
Figure 6 shows the free energies of various possible states of the system schematically. The 
curve marked X refers to the ordered crystalline form, that marked X2 refers to separated 
crystals with two new surfaces and the curve marked D refers to the disordered form. As 
the shain on the system is increased the free energy follows curve X. Although the stretched 
crystal becomes metastable when this curve crosses the curve X2, there is a high free energy 
banier to fracture (i.e. to curve X2), as it is difficult to initiate a void in an ordered crystal. 
For the platinumlgold crystal we postulate. that the sample continues to follow the curve X 
until it crosses the curve D, which is the disordered curve. The free energy banier to the 
order/disorder change is smaller than that to fracture. After the system crosses from curve 
X to curve D and disorders it can reach equilibrium following the vertical path shown with 
an arrow, because once it is disordered it is comparatively easy for a void to be formed and 
the sample to break. 

This scenario is consistent with the numerical experiments for platinum at the two 
highest temperatures, where we observe that the system disorders and then a void appears. 
At the lower temperature (T = 0.35Tm), only a portion of the crystal was observed to 
disorder. This can also be explained using figure 6. The curve D shifts downwards as 
the temperature is lowered. If we draw a common tangent to the curves X and D. we see 
that the system can lower its free energy by dividing into two portions, one ordered and 
one disordered, the former having a smaller strain and the latter a larger strain, keeping the 
same average strain. One may conjecture that the region of disorder in a very large sample 
would be larger, but finite, at higher temperatures, but exceeds the size of our simulation 
box at the two higher temperatures. 

In order to pursue these ideas further, I investigated the variation of the Landau free 
energy with order parameter for platinudgold at T = 0.55Tm at three values of the strain. 
E = 0.1, 0.125 and 0.135 which, as can be seen from figure 1, correspond respectively to 
(i) the point of maximum stress (failure), (ii) a configuration with a higher potential energy 
but less stress, and (iii) the point of maximum potential energy. The resulting Landau free 



4618 R M Lynden-Bell 

strain I 
Figure 6. Schematic hee energies of different passible states of a stretched crystal as a function 
of strain. States are marked as follows. X. a single perfect crystal: )(2: two perfect crystals; D: 
disordered liquid-like state. 

energy curves as a function of Q6 are shown in figure I. The minimum corresponding to 
the ordered state (i.e. the curve marked X on figure 6) is on the right of these figures; 
the corresponding value of Q6 decreases with strain as expected from the versus strain 
curves in figure 2. The second minimum associated with the disordered state (D on figure 6) 
does not exist at E = 0.1 (where the stress is a maximum). As the strain is increased this 
minimum deepens until i t  becomes equal to the ordered state minimum at E M 0.135. This 
must correspond to the point on figure 6 where the curves D and X cross. The free energy 
harrier to the change from order to disorder is only about twice kT. Careful examination 
of the order parameter against strain curves in figure 2 shows that the change from order to 
disorder occurs at about this strain. This confirms that the sample follows the free energy 
path in figure 6 along X, and across to D. The free energy curves were constructed with 
truncated octahedral boundary conditions to suppress nucleation of voids. In the sample in 
the strain experiments void formation soon follows disorder. 

4.1. Rhodiudsilver 

The difference between the platinudgold and rhodidsilver samples is most apparent at 
the lower temperature of 0.35T,. Between E % 0.135 and the breaking point, the sample 
fluctuates between positive and negative values of W, before settling down to a positive 
value. As we have seen this region is one where defects are formed as planes of atoms 
slide sideways past each other. In order to investigate the free energies involved, Landau 
free energy curves were again constructed, but this time with cubic boundary conditions. 
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The curves are shown in figure 8 for a strain of E = 0.15 using the order parameter W4. 
Two different starting configurations were chosen to generate the two curves shown. The 
change is from the stretched FCC ordered phase with a negative value of W4 (the left-hand 
minimum) to two different phases with slipped planes (the right-hand minima). The two 
points to notice are firstly that the free energy barriers are small and secondly that there is 
no minimum at W4 = 0 that would correspond to a disordered phase. This confirms that the 
sample has a number of nearby free energy minima corresponding to various ways in which 
the planes of atoms can slip, and either has no minimum corresponding to a disordered state 
or such a minimum is inaccessible. 

Figure 7. Landau free energy as a function of 
the order parameter QS for platinum af 750 K 
(D.55Tm) at lhm different strains. The left-hand 
well corresponds to the discudered state (0 in 
figure 6) and the right-hand well to the perfect 
crysal (X in figure 6). 



FlLT I I 

-0.15 -0.1 4.05 0 0.05 0.1 0.15 
w, 

Figure S. Landau free energy as a hmction 
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possible slates with defects. Note thal there is 
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4.2. Origin of differences 

The macroscopic properties of materials formed using the platinudgold and the 
rhodiumlsilver potential have some distinct differences, some of which are shown in table 1. 
The most striking of these is the ratio of the shear elastic constant to the bulk compressibility, 
which changes from 0.26 for platinudgold to 0.53 for rhodiudsilver [12]. This can be 
attributed in part to the softer potential of the former material, although more detailed 
analysis shows that it is the difference in the exponents n and m that is the most important 
factor [131. Another marked difference is in the melting points of the two materials. The 
melting point of platinudgold is 21% of the cohesive energy, while that of rhodiudsilver 
is 3.3%. This difference is mainly due to the difference in heats of fusion of the two model 
materials, that for rhodiudsilver beiig about 1.5 times as large as that for platinumlgold. 
The other factor that could influence the propensity for the stretched crystal to disorder 
is the change in volume on melting. This is about 7.8% for platinumlgold and 8.5% for 
rhodiumlsilver. 

These differences in bulk properties are reflected in differences in microscopic properties. 
For example 113,171 the amount of relaxation either at the surface of the metal, around an 
adatom or around a vacancy is much greater in Sutton-Chen potentials with small differences 
in the exponents. The most striking result of this is that the mechanism of migration of 
adatoms is by exchange with surface atoms in the case of platinudgold, while such a 
mechanism has a very unfavourable activation energy for silverhhodium [17]. 

The differences observed in the current numerical experiments can be related to these 
properties, the question being whether the free energy of accessible defective states is lower 
than that of accessible disordered states or not The End step in the failure of each sample 
is the formation of a void. Although this is particularly favoured by the low surface energies 
of the platindgold potential, these numerical experiments indicate that the crucial step is 
the surmounting of the free energy barrier to void formation. This barrier is very high in 
the perfect crystal and comparatively low in disordered material, so that the formation of a 
disordered region provides a route to failure. This is what we observed in platindgold. 
The mechanism of failure in the rhodidsilver material is different at low temperatures, 
and this is manifest even at the very lowest temperature used where, in contrast to the 
platindgold material, dislocations form spontaneously as the material is stretched. This 
allows the material to sustain a greater strain before failure. It seems likely that the reason 
that the platinudgold tends to disorder rather than form dislocations is that the free energy 
of the disordered state is lower than in rhodiudsilver, so that disorder occurs in preference 
to dislocations under the constraints of these experiments. We know that at zero stress the 
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disordered state has a lower free energy (in reduced units) in platindgold compared to 
rhodiumlsilver as the melting temperature is so much lower. It is not surprising then that 
this is true under conditions of finite stress. 

We should note that if the temperatures are compared as a function of the binding energy 
the difference between platinumlgold and rhodidsilver is larger (see table 2). For example, 
the temperature at which complete disorder occurs in the rhodium sample is considerably 
higher than in platinum sample, although they have comparable lattice energies. 

Platinum - %OK - 0.35 T, 

0.1 0.2 0.3. 0.4 0.5 
JlM" 

0 

Pt - 500K - 0.35 Tm 

I 
0 

Figure 9. The variation of shess and order 
parameters as a function of strain for platinum 
at 0.35Tm in the post-failure regime. 
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5. Bridge stretching and breaking: platinnmlgold 

Because of the periodic boundary conditions, the void that is formed initially soon becomes a 
bridge. The way in which a bridge behaves when stretched is of interest, as a thin whisker 
of material is formed when an atomic or scanning tunnelling microscope tip comes into 
contact with a flat [2]. Recent experiments by AgraTt and co-workers [3] show steps in the 
conductivity as this bridge is slxtched. In the numerical experiments described in this paper 
the bridge formed is much smaller than those seen in Agrat's experiments, but at lower 
temperatures one does see some steps in the stress-strain curves after failure. Similar steps 
were found in earlier work on rhodidsilver [9] and with Lennard-Jones potentials [SI. In 
the current experiments on platinudgold at the two higher temperatures, 0.7Tm and OSST,, 
there is no structure in the streswtrain curves after the initial failure, hut at 0.35T, two 
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secondary steps are seen in figure 9, one at E M 0.21 and the other at E w 0.37. After 
each step the stress and potential energy both increase. The sequence of configurations in 
figure 10 shows clearly what is happening. The bridge formed at this temperature is initially 
crystalline, but as it is stretched it becomes more disordered, and the magnitude of the stress 
and potential energy increase until a structural change occurs. As a result the atoms assume 
a new ordered configuration with an extra layer, reducing both the stress and the potential 
energy. The upper two configurations in the figure are just before and just after the fist 
such structural change. This process is then repeated, and the lower two configurations are 
before and after the second change. If the bridge were longer, then one would expect more 
such steps in the stress-sfrain curve. At the higher temperatures, on the other hand, the 
bridge is completely disordered and so stretches uniformly rather than in jerks. 

6. Discussion and conclusions 

These results are of interest for two reasons: firstly as giving insights into the way that 
real materials may fail under some experimental conditions, and secondly as a study of the 
limits of stability and mechanism of failure of perfect crystals when stretched. 

These numerical experiments suggest that if a perfect crystal of platinum or gold were 
stretched along the (100) direction failure would be brought about by thermal fluctuations 
which caused a small region of disorder. This relieves the strain locally and will tend to 
grow as a lens shaped volume with a concentration of stress at its edges. The higher the 
temperature the larger this volume would become before void formation occurred, followed 
by fracture. In rhodium and silver there are competing processes, which are particularly 
important at low temperatures. 

The results show that melting, or at least disordering, occurs well below the zero- 
pressure thermodynamic melting point in both platinudgold and rhcdiudsilver when the 
crystals are uniaxially stretched. This is consistent with what one would expect from the 
ClausiusClapeyron equation for the change is melting point with pressure 

AV 
= S' 

However, the sample is certainly not in thermodynamic equilibrium (or it would break into 
two crystals) and it is not immediately clear whether this equation is applicable. 

A perfect crystalline phase has limits of metastability outside which it cannot exist. For 
example, when the temperature is raised eventually the free energy minimum comesponding 
to the crystalline phase disappears [16]. This limit of stability (or metastability) has been 
termed the mechanical melting temperature by Yip and co-workers [ 18,191. It can be thought 
of as the point at which the amplitude of vibrations of the atoms in the crystal becomes great 
enough that the lattice breaks down. Similarly, there are limits of metastability for stretched 
crystals. These have been investigated at zero temperature for a number of systems [20,21], 
and the question is whether the observed failure of the crystals in these experiments is at 
the limits of metastability of the stretched crystals. 

The free energy calculations for the platinudgold model show that this is not hue. 
What we are observing in the stretching experiments at the higher temperatures is the point 
at which the free energy of the ordered and disordered phases become equal, rather than 
the l i t  of stability of the phase. The evidence for this is that the Landau free energy 
CUNS show two minima, one for the ordered and one for the disordered phase. The free 



4624 R M Lynden-Bell 

energy barrier between the two phases is low enough that it can be surmounted by thermal 
fluctuations, so failure occurs at the thermodynamic melting temperature of the stretched 
metastable crystal into the smtched metastable liquid. 

At lower temperatures both model materials undergo other changes on the way to 
reaching the true thermal equilibrium state of separate crystals, either local disorder or 
defect formation. 

In all these experiments the strain rather than the stress is constrained so that the observed 
phase transitions are under conditions of constant strain rather than constant stress. This is 
akin to observing a transition in an isotropic system at constant density rather than under the 
more usual conditions of constant pressure. However, the effects of the periodic boundary 
conditions me important here. At constant sfrain a sufficiently large system could lower 
its free energy by separating into regions of the two different phases with the same overall 
density. Indeed, we saw this behaviour in the platinum sample at the lower temperature 
(T = 0.35Tm), although the periodic boundaries make separation more difficult. A larger 
sample might be expected to phase separate at higher temperatures, where our sample was 
completely disordered. 
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